
GATS Page 1 – 20 G. Santor

GATS Companion to Installing BOOST
Author: Garth Santor
Editors: Trinh Hān
Copyright Dates: 2009, 2020, 2023
Version: 1.1.0 (2023-10-29)

Overview
How to install BOOST for use within Visual Studio 2022.

BOOST updates frequently but the installation process is essentially the same. As such, the version numbers in the

images will be 1.74.0 whereas in the text it will 1.83.0. The website may be even newer!

Acquiring the files
Go to the website https://www.boost.org/ and click the download link on the right side of the window.

https://www.boost.org/

GATS Page 2 – 20 G. Santor

Pick the prebuilt windows binaries link.

https://www.boost.org/users/download/

https://www.boost.org/users/download/

GATS Page 3 – 20 G. Santor

You’ll now be on SourceForge. Pick the latest 1.83.0 version link.

https://sourceforge.net/projects/boost/files/boost-binaries/

There are two binaries you can install, a 32-bit version, and a 64-bit version. These days you’ll likely only need the 64-bit

version (Visual C++ 2022 defaults to 64-bit builds). You’ll also have to select the release for the current version of Visual

Studio 2022. As of this writing, the updated version of Visual Studio 2022 is compiler is 17.7.6, but the binary format is

14.3, so that’s the version we will use.

https://sourceforge.net/projects/boost/files/boost-binaries/1.83.0/

Download both:

• boost_1_83_0-msvc_14.3-32.exe

• boost_1_83_0-msvc_14.3-64.exe

https://sourceforge.net/projects/boost/files/boost-binaries/
https://sourceforge.net/projects/boost/files/boost-binaries/1.83.0/

GATS Page 4 – 20 G. Santor

GATS Page 5 – 20 G. Santor

You should now have the two new files in your download folder…

Install the libraries
The two files you downloaded are self-extracting archives. You’ll need about 4GiB of free memory (ideally on drive C).

There are two reasons drive C is the best choice:

Compatibility: System configuration and portability will be better (hopefully seamless) if we all use the same location.

Performance: Many of us will have a solid-state drive (SSD) as their primary drive. I have a 2 TiB SSD for my primary

drive (drive C:) and a slightly slower 4 TiB SDD for my secondary drive (drive D:). Since boost has a huge number of

small header files (15,673 in version 1.83.0) the lower latency and higher transfer rate of an SSD will provide a noticeable

improvement when compiling.

You’ll install each library (one after the other) as many of the files will be overwritten by the other. The order you install

them doesn’t matter. Double click either archive and follow the steps below.

You’ll probably see this as soon as you run the installer.

Click More info, you should see:

GATS Page 6 – 20 G. Santor

Click Run anyway.

It is best to use the default folder (C: drive), so just click Next >.

Installation could take several minutes, depending on the speed of your drive, RAM, and CPU. My desktop installs boost

in about 1 minute, but I’ve seen some system take more than 20 minutes to install.

When complete, do the same for the 64-bit version.

Setting the Project Properties for Visual C++ with BOOST
Visual Studio 2017 and earlier had global property pages, but they were removed in Visual Studio 2019 (they haven’t said

why…)

We’ll need a new C++ project loaded into Visual Studio 2022. We’ll create a Hello, BOOST! application to test our

configuration.

GATS Page 7 – 20 G. Santor

Use the Windows Desktop

Wizard to create a hello world

desktop application.

Name the project…

Verify Console Application

(.exe) as the application type,

no additional options need to

be checked.

GATS Page 8 – 20 G. Santor

Ignoring the comments your

source code should appear as:

#include <iostream>

int main() {
 std::cout << "Hello World!\n";
}

Modify the code to use a

header-only boost library.

#include <iostream>
using namespace std;
#include <boost/multiprecision/cpp_int.hpp>
using namespace boost::multiprecision;

int main() {
 cout << "Hello World!\n";
 cpp_int big("1234567890123456789012345678901234567890");
}

GATS Page 9 – 20 G. Santor

Configuring Boost for one project only: (easiest)
Open the project properties for your solution (the wrench icon, or menu Project → Properties).

Let’s configure for the latest version of C++. Make certain that you have ‘All Configurations’ and ‘All Platforms’

selected.

Next set the include directories …

GATS Page 10 – 20 G. Santor

Then set the library directories (once for each platform).

64-bit:

32-bit:

If you are not using property sheets, you can skip to the next section.

GATS Page 11 – 20 G. Santor

Compiling Boost with C++ 23
Boost 1.83.0 isn’t quite ready for C++ 23. It still uses some deprecated features and Visual C++ will complain!

Until Boost catches up with the standard, we can block the compiler from issuing a torrent of errors and warnings about

boost using old features. Add the following to your application properties:

Your BOOST/C++ program should now compile. The rest of the document is for a more advanced, but unnecessary

configuration.

Configuring Boost using a Property Page (32-bit)
You can skip this part if you have used the previous method.

Add a new reusable project property sheet (32-bit)
Open the Property Manager Menu: View → Property Manager

GATS Page 12 – 20 G. Santor

Expand the Debug | Win32

folder

Add a new project property

sheet

Name the file

boost.win32.props and save

the property sheet to the boost

installation folder C:\local.

GATS Page 13 – 20 G. Santor

Open the property sheet.

Select the VC++ Directories

tab.

GATS Page 14 – 20 G. Santor

Edit the include paths.

Add a new line…

GATS Page 15 – 20 G. Santor

Add the boost main folder

You should see…

The $(IncludePath) must be

there as it represents the

original path from the default

configuration.

GATS Page 16 – 20 G. Santor

Add to the library path.

Note that we must specify

which of the two libraries we

want.

In this case we want the

Win32 library, so we pick the

lib32-msvc-14.2 folder

You should see…

Click OK

GATS Page 17 – 20 G. Santor

Test the configuration… Run the program.

The errors should disappear and the project should build and execute.

Adding the property sheet to release mode
The release build uses the same header files as debug mode, and those header files instruct the linker to use the correct

debug/release libraries. So, we can reuse the property page from the debug build in the release build.

Switch to release mode.

You’ll notice that the include

directive, the using statement,

and the object definition are

generating errors again.

Expand the Release | Win32

tab in the Property Manager

GATS Page 18 – 20 G. Santor

Add the existing property

sheet.

You should see…

And note that the errors have

cleared and

Verify the release mode builds

Configure for 64-bit builds
The 64-bit (x64) configurations use the same header files, but different libraries. Libraries specifically built with the 64-

bit compiler.

The process will be similar to the x86 installation:

• Create a property sheet in the boost folder

• Set the paths: same include, 64-bit binaries

• Add to both configurations.

GATS Page 19 – 20 G. Santor

Switch to the 64-bit (x64)

build.

Add a new project property

sheet to Debug | x64

Name the file boost.x64.props

and save it in the C:\local

folder.

GATS Page 20 – 20 G. Santor

Configure the paths.

Note that the library path

points to the 64-bit folder.

Add the file you just created to

the release configuration as

well.

Save and test both configurations

New projects
For new projects you’ll only need to add the existing property sheets to the appropriate project type in the project

manager.

Document History
Version Date Activity

0.0.0 2009 Document created

1.0.0 2020-09-09 Updated for Visual Studio Community 2019

1.1.0 2023-10-29 Updated for Visual Studio Community 2022

